Data Bank Compression Programs

There are two compression programs: CPress and HPress. CPress is the orginal Press
program, while HPress compresses G workspace bank directly into a hashed bank. Hashed
banks are now the standard data banks that Inforum creates and maintains. The compression
routines for hashed and compressed banks are essentially the same, however, with the hashed
banks we have added a far superior method of indexing the data series.

Since the compression of both types of banks is so similar, the syntax and usage for both
compression programs are essentially the same as well. Therefore, what follows assumes one is
using HPress. If you wish to use the original compression program, simply substitute CPress
where HPress appears and read 'compress,' where 'hash' appears below.

The HPress data bank compression program can generally reduce the size of a G data bank by
at least a factor of 2 and sometimes by much more. The banks which it produces can be used
directly in G7 and G.

The general invocation of HPress 1is:

hpress <original bank> [hashed bank] [-m<missing>] [-s<maxslashs>]

As usual, the <> enclose required items; [], optional items. Here are several examples:

hpress nipag

hpress nipag e:nipag

hpress nipag -m-999999

hpress nipag -s2

hpress nipaqg e:nipaqg -m-999999 -g4

If no hashed bank is named, as in the first example, the original bank name, but with different
extensions is used for the output bank. If the data source has used some unusual value, such as -
999999, to indicate a missing value, these observations may be turned to zeroes using the -m
option, as in the last example. The meaning of the "maxslash" option is explained below.

Banks which have been pressed by HPress have the extensions ".hin" and ".hbk" for their
index and data files, respectively. To assign a hashed bank in G7 or G, the command is simply

hbk <bank name>
for example

hbk nipag

assigns the hashed quarterly NIPA bank. All other commands should then work exactly as
with any other assigned bank. It is NOT possible to assign a hashed bank as a workspace with
the wsb command. It IS possible to assign a hashed bank as the initial bank in the G.CFG file.

HPress does two things to compress each series.
1. Leading and trailing zeroes are removed from the series.

2. Whenever possible, a series is represented mainly by 2-byte integers rather than by 4-byte
floating point numbers.

To accomplish the second step, the number of decimal places in each series is found and the
decimal point is slid to the right that many places and the result expressed as a 4-byte integer. (If
some number is too big to be expressed as a 4-byte integer, the number of decimal places is
reduced and the process repeated.) First differences of the (non-zero) values are then calculated
and checked for their expressability as two-byte integers. If all of them pass, the series is then
stored by recording the starting date, frequencey, number of observations, number of decimal
places, starting observation as a four-byte integer and then the first differences as two-byte
integers. If this compression fails, then either (a) the numbers are stored as four-byte floating-
point numbers or (b) the differences are divided by a power of 2 up to a maximum of "maxslash"
as given by the -s option.

What precision is possible in a compressed series? A laser printer typically prints 300 dots
per inch. The precision of the first differences in a compressed series is comparable to one such
dot in a graph nine feet high! Although all series in the US quarterly national accounts from
1947 to 1988 compress with complete accuracy, about five percent of the series in the Blue
Pages of the Survey of Current Business fail, and about ten percent of the series in the
International Financial Statistics fail to compress. This failure occurs when series are being
carried to six or seven significant figures in the sources. Obviously, this much accuracy is
seldom of any value in economic use of the series. If compaction is quite important, you may
therefore want to compress these series at a minor cost in terms of accuracy. To do so, use the -s
option on the command line to set "maxslash", the maximum power of 2 which will be used to
divide the differences to get them down to the size which can be expressed as a two-byte integer.
Obviously, the slash value actually used for each series is stored with the series and is used by G
in interpreting the compressed series. A file called "forced" is created with each compression. It
lists all series either slashed (marked "forced") or dumped as four-byte floating point numbers
(marked "gave up"). This file has the form of an add file for G to draw graphs of the original and
compressed series. The default value of maxslash is 0; only compression with perfect accuracy
allowed. However, values of maxslash as high as 4 have not led to graphically distinguishable
series. (Files on Econdata are compressed with maxslash = 0.)

Even in the case of failure in compression, the elimination of leading and trailing zeroes often
reduces the size of the bank. Also, the organization of index file in a hashed bank greatly speeds
up the series searching process in PDG, among others.

The easist way to update a hashed bank is by using HSPLICE. There is another (and,
unfortunately, more tedious) way to update a hashed bank. For example, to update a hashed
bank, say nipag.hbk, from the file newnipq.hbk, the steps are as follows:

1. Run the BUPS program.

bups nipaqg
This will create the ascii file NIPAQ.BUP.

2. Start G and use the "zap" command to set the starting date and size of the updated bank.
Then do:

hbk nipag

add nipaqg.bup
hbk newnipg
add nipag.bup
ol

3. The workspace bank of G is now the updated bank. Rename it. If it was named ws and we
wanted to rename it upnipag, then we would do:

ren ws.* upnipaq.*

4. If you wish to compress the bank, do:

hpress upnipaqg

When you have checked that all is well in the updated bank, you may, of course, wish to
rename it to nipagq.

Note for Programers
The precise form of the hashed bank .hin and .hbk files is as follows:

The ".hin" file contains:

item size in bytes C type
ns 4 long
nbins 2 unsigned
nsb 2*nbins unsigned
ncharb 2*nbins unsigned
posbin 4*nbins unsigned
binname (0) nchar [0] char
binposts (0) 4*nnmsb [0] long
binname (1) nchar [1] char
binposts (1) 4*nnmsb [1] long
binname (2) nchar [2] char
binposts (2) 4*nnmsb [2] long
binname (nbins-1) nchar [nbins-1] char
binposts (nbins-1) 4*nnmsb [nbins-1] long

Here, ns denotes the number of series in the bank. The series are separated into "bins". The
number of bins in the bank is denoted by nbins. The number of series in each bin is denoted by
the array nsb. The sum of the number of characters in the names (including each "\0') of the
series contained in each bin is denoted by the array ncharb. The beginning positions in the
"hin" file of the first bytes of the binname() strings is given by the array posbin. The string
binname(i) denotes the concatenation (including the \0's) of all the series names in the i-th bin.
Finally, binposts(i) denotes the array of beginning positions in the associated ".hbk" of the series
in the the i-th bin. Of course, the ordering of the series in the binname() and binposts() arrays
must be the same.

Consider an example. Suppose that the 3rd bin contains the series "joe", "dave", and "bill".
The string binname(3) would be:

"joe\0dave\0bill\o0o"

Suppose that the starting positions in the ".hbk" bank for the three series are 40700008,
490987, 3378294. The array binposts(3) would then be [40700008, 490987, 3378294]. And
nsb[3] =3, and ncharb[3] = 14. 1f the beginning position of binname(3) in the ".hin" file is
4724, then posbin[3] = 4724.

To assign a bin number to a series you must use the following hashing routine. In C, the
routine is:

unsigned hash(char *s);

hash (char *s)

{

unsigned bill;

for (bill=0;*s!='\0';s++) bill = *s + 31*bill;
bill = bill%nbins;
return(bill) ;

}

To continue with the example, to determine the bin which the series "joe" really belongs to
you'd evaluate the function hash("joe").

The .hbk file:

0 - 79 char Name of bank (terminated with a null)

80 - 81 int ns, number of sgseries in the bank

82 - 85 long psn, position in file of index

86 - first series, as described below

* (psn+1l) - second series,

psn long position in file of first byte of first
series

psn+4 long position in file of first byte of second
series

on out to ns series

For each series, the format is:

byte Content
base year
frequency*1l6+period
slash*l6+maxplaces or 255 if not compressed
-4 number of observations
-8 first observation as a long
- differences as integers

0
1
2
3
5
9
if not compressed, floats begin in byte 5

	Note for Programers

